Literature Review : The Role of Polyphenols in Modulating Gut Microbiota and Their Anti-Inflammatory Effects on Inflammatory Bowel Disease (IBD)
DOI:
https://doi.org/10.54832/phj.v8i1.1190Keywords:
polyphenols, gut microbiota, anti-inflammatory, inflammatory bowel disease, literature reviewAbstract
Introduction: Inflammatory Bowel Disease (IBD) is an idiopathic condition characterized by chronic inflammation of the digestive tract. The prevalence of IBD in Southeast Asia has increased from 103,000 cases in 2017 to approximately 118,000 cases in 2020. Diet plays a crucial role in the development and progression of IBD. Polyphenols, bioactive compounds in plant-based foods, interact with molecular targets to inhibit inflammation and protect against oxidative stress. Additionally, polyphenols modulate the gut microbiota, promoting the growth of beneficial bacteria.
Objectives: The study aimed to review the effects of polyphenols from various food sources in reducing inflammation and enhancing gut microbiota diversity as a potential therapeutic approach for IBD.
Methods: This study used a literature review method, analyzing experimental in vivo studies. Data were collected by searching for published articles in ScienceDirect, Google Scholar, and PubMed.
Results: Eight studies were identified discussing the role of polyphenols in IBD. Polyphenols from various sources, including camellia oil, EGCG from green tea, resveratrol, kiwi polyphenol extract, curcumin, luteolin, bee pollen, and flavonoids, were found to have positive effects on modulating gut microbiota composition and reducing inflammation in animal models of IBD.
Conclusions: Polyphenols have potential as a therapeutic agent for IBD by inhibiting inflammation and promoting gut microbiota diversity.
Downloads
References
Abbas, M., Saeed, F., Anjum, F. M., Afzaal, M., Tufail, T., Bashir, M. S., Ishtiaq, A., Hussain, S., & Suleria, H. A. R. (2017). Natural polyphenols: An overview. International Journal of Food Properties, 20(8), 1689–1699. https://doi.org/10.1080/10942912.2016.1220393
Alam, A., & Neish, A. (2018). Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers, 6(3), 1–22. https://doi.org/10.1080/21688370.2018.1539595
Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Korzenik JR, Fuchs CS, Willett WC, Richter JM, Chan AT. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Korzenik JR, Fuchs CS, Willett WC, Richter JM, CA (2013). A Prospective Study of Long-term Intake of Dietary Fiber and Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology, 83(1), 1–11. https://doi.org/https://doi.org/10.1053/j.gastro.2013.07.050
Aravind, S., Wichienchot, S., … R. T.-F. R., & 2021, undefined. (n.d.). Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Elsevier. Retrieved May 1, 2024, from https://www.sciencedirect.com/science/article/pii/S0963996921000880?casa_token=uUvMCS-lU68AAAAA:RwcfDzr-TMNBgPLaSY7dOUjuVLQGT_6pm_JKw7lFgkA0_Iy61PsrV6irUy-czMl6Rsk7jamAEJpQ
Chen, S., Zhao, H., Cheng, N., & Cao, W. (2019). Rape bee pollen alleviates dextran sulfate sodium (DSS)-induced colitis by neutralizing IL-1β and regulating the gut microbiota in mice. Food Research International, 122(April), 241–251. https://doi.org/10.1016/j.foodres.2019.04.022
Deleu, S., Machiels, K., Raes, J., Verbeke, K., & Vermeire, S. (2021). Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine, 66. https://doi.org/10.1016/j.ebiom.2021.103293
Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325–2340. https://doi.org/10.1194/jlr.R036012
Duda-Chodak, A., Tarko, T., Satora, P., & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European Journal of Nutrition, 54(3), 325–341. https://doi.org/10.1007/s00394-015-0852-y
Espley, R. V, Butts, C. A., Laing, W. A., Martell, S., Smith, H., McGhie, T. K., Zhang, J., Paturi, G., Hedderley, D., Bovy, A., Schouten, H. J., Putterill, J., Allan, A. C., & Hellens, R. P. (2014). Dietary Flavonoids from Modified Apple Reduce Inflammation Markers and Modulate Gut Microbiota in Mice 1, 2, 3. The Journal of Nutrition, 144(2), 146–154. https://doi.org/https://doi.org/10.3945/jn.113.182659
Holleran, G., Scaldaferri, F., Gasbarrini, A., & Currò, D. (2020). Herbal medicinal products for inflammatory bowel disease: A focus on those assessed in double-blind randomised controlled trials. Phytotherapy Research, 34(1), 77–93. https://doi.org/10.1002/ptr.6517
Hou, J. K., Abraham, B., & El-Serag, H. (2011). Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. American Journal of Gastroenterology, 106(4), 563–573. https://doi.org/10.1038/ajg.2011.44
Jamieson, P. E., Carbonero, F., & Stevens, J. F. (2023). Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Current Research in Food Science, 6(February), 100521. https://doi.org/10.1016/j.crfs.2023.100521
Jiang, Q., Jiang, C., Lu, H., Zhou, T., Hu, W., Ping Tan, C., Feng, Y., Shen, G., Xiang, X., & Chen, L. (2023). Camellia oil alleviates DSS-induced colitis in mice by regulating the abundance of intestinal flora and suppressing the NF-κB signaling pathway. Journal of Functional Foods, 108, 105777. https://doi.org/https://doi.org/10.1016/j.jff.2023.105777
Kaser, A., Zeissig, S., & Blumberg, R. S. (2010). Genes and environment: How will our concepts on the pathophysiology of IBD develop in the future? Digestive Diseases, 28(3), 395–405. https://doi.org/10.1159/000320393
Kaulmann, A., & Bohn, T. (2016). Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases - Promises, Perspectives, and Pitfalls. Oxidative Medicine and Cellular Longevity, 2016(c). https://doi.org/10.1155/2016/9346470
Khan, I., Ullah, N., Zha, L., Bai, Y., Khan, A., Zhao, T., Che, T., & Zhang, C. (2019). Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens, 8(3), 1–28. https://doi.org/10.3390/pathogens8030126
Li, F., Han, Y., Cai, X., Gu, M., , Sun, J., , Qi, C., Goulette, T., , Song, M., , Li, Z., , & Xiao, H. (2018). Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice. Food & Function, 11(1), 1063–1073. Physiology & behavior, 176(1), 139–148. https://doi.org/10.1039/c9fo01519a.Dietary
Li, B., Du, P., Du, Y., Zhao, D., Cai, Y., Yang, Q., & Guo, Z. (2021). Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sciences, 269. https://doi.org/10.1016/j.lfs.2020.119008
Lipinwati, L. (2022). Inflammatory Bowel Disease. Electronic Journal of Scientific Environmental Health And Disease, 2(2), 141–147. https://doi.org/10.22437/esehad.v2i2.16919
Liu, F., Li, D., Wang, X., Cui, Y., & Li, X. (2021). Polyphenols intervention is an effective strategy to ameliorate inflammatory bowel disease: a systematic review and meta-analysis. International Journal of Food Sciences and Nutrition, 72(1), 14–25. https://doi.org/10.1080/09637486.2020.1760220
Ng, S. C., Shi, H. Y., Hamidi, N., Underwood, F. E., Tang, W., Benchimol, E. I., Panaccione, R., Ghosh, S., Wu, J. C. Y., Chan, F. K. L., Sung, J. J. Y., & Kaplan, G. G. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, 390(10114), 2769–2778. https://doi.org/10.1016/S0140-6736(17)32448-0
Olfatifar , M. , Zali , M. R. , Pourhoseingholi , M. A. , Balaii , H. , Ghavami , S. B. , Ivanchuk , M. , Ivanchuk , P. , Nazari , S. hashemi , shahrokh , S. , Sabour , S. , Khodakarim , S. , Aghdaei , H. A. , Rohani , P. , & Mehralian , G. ( 2021 ). The emerging epidemic of inflammatory bowel disease in Asia and Iran by 2035: A modeling study. BMC Gastroenterology, 21(1), 1–8. https://doi.org/10.1186/s12876-021-01745-1
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., … Zoetendal, E. (2010). A human gut microbial gene catalog established by metagenomic sequencing. Nature, 464(7285), 59–65. https://doi.org/10.1038/nature08821
Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., Stahl, B., Guarner, F., Respondek, F., Whelan, K., Coxam, V., Davicco, M. J., Léotoing, L., Wittrant, Y., Delzenne, N. M., Cani, P. D., … Meheust, A. (2010). Prebiotic effects: Metabolic and health benefits. British Journal of Nutrition, 104(SUPPL.2). https://doi.org/10.1017/S0007114510003363
Rubin, D. C., Shaker, A., & Levin, M. S. (2012). Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Frontiers in Immunology, 3(MAY), 1–10. https://doi.org/10.3389/fimmu.2012.00107
Ruiz Castro, P. A., Yepiskoposyan, H., Gubian, S., Calvino-Martin, F., Kogel, U., Renggli, K., Peitsch, M. C., Hoeng, J., & Talikka, M. (2021). Systems biology approach highlights mechanistic differences between Crohn’s disease and ulcerative colitis. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-91124-3
Sánchez-Rodríguez, C., Martín-Sanz, E., Cuadrado, E., Granizo, J. J., & Sanz-Fernández, R. (2016). Protective effect of polyphenols on presbycusis via oxidative/nitrosative stress suppression in rats. Experimental Gerontology, 83, 31–36. https://doi.org/10.1016/j.exger.2016.07.005
Santana, P. T., Rosas, S. L. B., Ribeiro, B. E., Marinho, Y., & de Souza, H. S. P. (2022). Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. International Journal of Molecular Sciences, 23(7). https://doi.org/10.3390/ijms23073464
Segain, J. P., Raingeard de la Blétière, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., Blottière, H. M., & Galmiche, J. P. (2000). Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut, 47(3), 397–403.http://www.ncbi.nlm.nih.gov/pubmed/10940278%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1728045
Stephanie, A., & Makmun, D. (2014). Current Diagnostic Approach of Inflammatory Bowel Disease. The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy, 15(1), 44–51. https://doi.org/10.24871/151201444-51
Strober, W., Fuss, I., Mannon, P., Strober, W., Fuss, I., & Mannon, P. (2007). The fundamental basis of inflammatory bowel disease Find the latest version : Science in medicine The fundamental basis of inflammatory bowel disease. The Journal of clinical investigation, 117(3), 514–521. https://doi.org/10.1172/JCI30587.514
Venegas, D. P., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and their relevance for inflammatory bowel diseases. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00277
Wu, Z., Huang, S., Li, T., Li, N., Han, D., Zhang, B., Xu, Z. Z., Zhang, S., Pang, J., Wang, S., Zhang, G., Zhao, J., & Wang, J. (2021). Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome, 9(1). https://doi.org/10.1186/s40168-021-01115-9
Yoo, J. Y., & Kim, S. S. (2016). Probiotics and prebiotics: Present status and future perspectives on metabolic disorders. Nutrients, 8(3), 1–20. https://doi.org/10.3390/nu8030173
Yuan, M., Chen, X., Su, T., Zhou, Y., & Sun, X. (2021). Supplementation of Kiwifruit Polyphenol Extract Attenuates High Fat Diet Induced Intestinal Barrier Damage and Inflammation via Reshaping Gut Microbiome. Frontiers in Nutrition, 8(August), 1–15. https://doi.org/10.3389/fnut.2021.702157
Zheng, L. X., Guo, K. E., Huang, J. Q., Liu, M. H., Deng, B. L., Liu, D. Y., Zhou, B. G., Zhou, W., Zhong, Y. B., & Zhao, H. M. (2023). Curcumin alleviated dextran sulfate sodium-induced colitis by recovering memory Th/Tfh subset balance. World Journal of Gastroenterology, 29(36), 5226–5239. https://doi.org/10.3748/wjg.v29.i36.5226











