The Effect of CYP3A4, CYP3A5 and ABCB1 Polymorphisms on Tacrolimus Dose Requirements in Adult Kidney Transplant Patients
DOI:
https://doi.org/10.54832/phj.v8i1.1371Keywords:
Tacrolimus, Kidney Transplantation, Pharmacogenetics, CYP3A5 Polymorphism, imunosuppressive TherapyAbstract
Introduction: Polymorphisms in the CYP3A4, CYP3A5, and ABCB1 genes play a significant role in the response to tacrolimus therapy in kidney transplant patients. Tacrolimus, a commonly used immunosuppressant, has a narrow therapeutic index and is highly influenced by individual genetic variation. These genetic polymorphisms significantly affect the response to tacrolimus therapy in patients undergoing kidney transplantation. Inaccurate dosing can lead to serious consequences: a tacrolimus dose that is too low increases the risk of acute rejection, while a dose that is too high can cause nephrotoxicity and other serious side effects. Therefore, accurate initial dosing of tacrolimus is critical in the clinical practice of kidney transplantation..
Methods: The article search was conducted using the CrossRef database, which provided access to various scientific journals. The focus was on research published in the last five years, ensuring that only studies exploring polymorphisms related to the CYP3A4, CYP3A5, and ABCB1 genes in the context of tacrolimus were used.
Results: Previous analysis revealed that CYP3A5 polymorphisms were the most consistent genetic factors influencing tacrolimus metabolism; expressors with the *1/*1 and *1/*3 genotypes required higher doses to reach target levels, while non-expressors with the *3/*3 genotypes experienced a greater risk of toxicity with elevated trough levels, although contributions from CYP3A4 and ABCB1 varied based on ethnicity and transplantation stage.
Conclusions: From the results of this review, it can be concluded that CYP3A5 gene polymorphisms are the primary predictors of tacrolimus dose requirements. Recommendations for implementing CYP3A5 genotyping before transplantation may enhance the efficacy of immunosuppression and reduce the risk of toxicity. Further research is necessary to develop more adaptive, pharmacogenetic-based dosing models and to evaluate the clinical factors influencing tacrolimus pharmacokinetics.
Downloads
References
Anh, N. T. V, Le, V., Bui, M. V, Pham, T. Q., The, S. T., Binh, N., & Hương, N. T. L. (2020). Tacrolimus Therapeutic Drug Monitoring in Vietnamese Renal Transplant Recipients. Pharmacognosy Journal, 12(5), 984–992. https://doi.org/10.5530/pj.2020.12.139
Brazeau, D. (2025). Association of Metabolic Genotype Composite CYP3A5*3 And CYP3A4*1B to Tacrolimus Pharmacokinetics in Stable Black and White Kidney Transplant Recipients. Clinical and Translational Science, 18(10). https://doi.org/10.1111/cts.70370
Brazeau, D. A., Attwood, K., Meaney, C. J., Wilding, G. E., Consiglio, J. D., Chang, S. S., … Tornatore, K. M. (2020). Beyond Single Nucleotide Polymorphisms: CYP3A5∗3∗6∗7 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Frontiers in Genetics, 11(August), 1–13. https://doi.org/10.3389/fgene.2020.00889
Chang, Y. L., Hsiao, T. H., Chen, Y. M., Lin, C. H., Liao, Y. J., Hsu, C. Y., … Chen, C. H. (2025). Refining tacrolimus dosing through CYP3A5 pharmacogenetics in Taiwanese renal transplant recipients. Renal Failure, 47(1). https://doi.org/10.1080/0886022X.2025.2523567
Cheng, F., Li, Q., Cui, Z., Wang, Z., Zeng, F., & Zhang, Y. (2022). Tacrolimus Concentration Is Effectively Predicted Using Combined Clinical and Genetic Factors in the Perioperative Period of Kidney Transplantation and Associated with Acute Rejection. Journal of Immunology Research, 2022, 1–8. https://doi.org/10.1155/2022/3129389
Cusinato, Diego A C, Lacchini, R., Romão, E. A., Neto, M. M., & Coelho, E. B. (2014). Relationship OfCYP3A5genotype AndABCB1diplotype to Tacrolimus Disposition in Brazilian Kidney Transplant Patients. British Journal of Clinical Pharmacology, 78(2), 364–372. https://doi.org/10.1111/bcp.12345
Cusinato, Diego Alberto C., Lacchini, R., Romao, E. A., Moysés-Neto, M., & Coelho, E. B. (2014). Relationship of CYP3A5 genotype and ABCB1 diplotype to tacrolimus disposition in Brazilian kidney transplant patients. British Journal of Clinical Pharmacology, 78(2), 364–372. https://doi.org/10.1111/bcp.12345
Gelder, T. v., Meziyerh, S., Swen, J. J., Vries, A. P. J. de, & Moes, D. J. A. R. (2020). The Clinical Impact of the C0/D Ratio and the CYP3A5 Genotype on Outcome in Tacrolimus Treated Kidney Transplant Recipients. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.01142
Gustavsen, M. T., Midtvedt, K., Robertsen, I., Woillard, J., Debord, J., Klaasen, R. A., … Åsberg, A. (2020). Fasting Status and Circadian Variation Must Be Considered When Performing AUC‐based Therapeutic Drug Monitoring of Tacrolimus in Renal Transplant Recipients. Clinical and Translational Science, 13(6), 1327–1335. https://doi.org/10.1111/cts.12833
Hannachi, I., Chadli, Z., Kerkeni, E., Chaabane, A., Ben-Fredj, N., Boughattas, N. A., & Aouam, K. (2024). Distribution of CYP3A4 and CYP3A5 Polymorphisms and Genotype Combination Implicated inTacrolimusMetabolism. Tunisie Medicale, 102(9), 537–542. https://doi.org/10.62438/tunismed.v102i9.4969
Hirai, T., Morikawa, Y., Onishi, R., Nakatani, Y., Nishikawa, K., Inoue, T., & Iwamoto, T. (2023). Impact of glycaemic control and CYP3A5 polymorphisms on tacrolimus trough concentrations after adult kidney transplantation. British Journal of Clinical Pharmacology, 89(6), 1852–1861. https://doi.org/10.1111/bcp.15662
Htun, Y. Y., Than, N. N., & Swe, H. K. (2020). Effect of Cytochrome P450 3A5 Polymorphism on the Pharmacokinetics of Tacrolimus in Renal Transplant Recipients. Korean Journal of Transplantation, 34(1), 24–30. https://doi.org/10.4285/kjt.2020.34.1.24
Kolonko, A., Pokora, P., Słabiak-Błaż, N., Czerwieńska, B., Karkoszka, H., Kuczera, P., … Wiȩcek, A. (2021). The Relationship Between Initial Tacrolimus Metabolism Rate and Recipients Body Composition in Kidney Transplantation. Journal of Clinical Medicine, 10(24), 5793. https://doi.org/10.3390/jcm10245793
Kwakyi, E., Nartey, E. T., Otabil, M. K., Asiedu-Gyekye, I. J., Ahorhorlu, S. Y., Bioma, V., & Kudzi, W. (2023). Genetic Polymorphisms and Tacrolimus Dose Requirements: Potential Implications for Ghanaian Patients With End-Stage Renal Disease. https://doi.org/10.21203/rs.3.rs-3595318/v1
Li, C., Li, L., Lin, L., Jiang, H., Zhong, Z., Li, W.-M., … Zhou, L. (2014). Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR Genetic Polymorphisms on Tacrolimus Metabolism in Chinese Renal Transplant Recipients. Plos One, 9(1), e86206. https://doi.org/10.1371/journal.pone.0086206
Lloberas, N., Vidal‐Alabró, A., & Colom, H. (2024). Customizing Tacrolimus Dosing in Kidney Transplantation: Focus on Pharmacogenetics. Therapeutic Drug Monitoring, 47(1), 141–151. https://doi.org/10.1097/ftd.0000000000001289
Maldonado, A. Q., Asempa, T. E., Hudson, S., & Rebellato, L. M. (2017). Prevalence of CYP3A5 Genomic Variances and Their Impact on Tacrolimus Dosing Requirements Among Kidney Transplant Recipients in Eastern North Carolina. Pharmacotherapy the Journal of Human Pharmacology and Drug Therapy, 37(9), 1081–1088. https://doi.org/10.1002/phar.1970
Mendrinou, E., Mashaly, M. E., Okily, A. M. A., Mohamed, M. E. M., Refaie, A., Elsawy, E. M., … Patrinos, G. P. (2020). CYP3A5 Gene-Guided Tacrolimus Treatment of Living-Donor Egyptian Kidney Transplanted Patients. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.01218
Mukkavilli, K. K., Khan, M. S. A., Donakonda, A. K., Gopal Gangisetty, S. R., & Poojaveli, D. (2024). Influence of Cyp3A4, Cyp3A5 and ABCB1 Polymorphisms on Tacrolimus Concentrations and Rejection Risk in Indian Kidney Transplant Recipients. Indian Journal of Transplantation, 18(1), 42–45. https://doi.org/10.4103/ijot.ijot_76_23
Muller, W. K., Dandara, C., Manning, K., Mhandire, D., Ensor, J., Barday, Z., & Freercks, R. (2020). CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population. South African Medical Journal, 110(2), 159–166. https://doi.org/10.7196/SAMJ.2020.v110i2.13969
Pallio, G., Irrera, N., Bitto, A., Mannino, F., Minutoli, L., Rottura, M., … Squadrito, F. (2020). Failure of Achieving Tacrolimus Target Blood Concentration Might Be Avoided by a Wide Genotyping of Transplanted Patients: Evidence From a Retrospective Study. Journal of Personalized Medicine, 10(2), 47. https://doi.org/10.3390/jpm10020047
Provenzani, A. (2011). Influence of CYP3A5 and ABCB1 Gene Polymorphisms and Other Factors on Tacrolimus Dosing in Caucasian Liver and Kidney Transplant Patients. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2011.794
Qin, Y., Li, Y., Feng, T., Pan, H., Li, J., Zhang, F., … Sun, B. (2025). Correlation of renal function with intra-patient variability of tacrolimus concentration among recipients of renal transplants: a 10-year study. Translational Andrology and Urology, 14(2), 220–227. https://doi.org/10.21037/tau-24-564
Rotarescu, C. A., Maruntelu, I., Rotarescu, I., Constantinescu, A. E., & Constantinescu, I. (2024). Analysis of ABCB1 Gene Polymorphisms and Their Impact on Tacrolimus Blood Levels in Kidney Transplant Recipients. International Journal of Molecular Sciences, 25(20). https://doi.org/10.3390/ijms252010999
Seligson, N. D., Zhang, X., Zemanek, M., Johnson, J. A., VanGundy, Z., Wang, D., … Poi, M. (2024). CYP3A5 Influences Oral Tacrolimus Pharmacokinetics and Timing of Acute Kidney Injury Following Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1334440
Sreeja, S. R., Gracious, N., & Nair, R. R. (2016). Pharmacogenomics of CYP3A5 Polymorphism: Predicting Dose-Adjusted Trough Levels of Tacrolimus in South Indian Renal Transplant Patients. Journal of Pharmacogenomics & Pharmacoproteomics, 7(3). https://doi.org/10.4172/2153-0645.1000161
Srinivas, L., Gracious, N., & Nair, R. R. (2021a). Pharmacogenetics Based Dose Prediction Model for Initial Tacrolimus Dosing in Renal Transplant Recipients. Frontiers in Pharmacology, 12(November), 1–9. https://doi.org/10.3389/fphar.2021.726784
Srinivas, L., Gracious, N., & Nair, R. R. (2021b). Pharmacogenetics Based Dose Prediction Model for Initial Tacrolimus Dosing in Renal Transplant Recipients. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.726784
Tanaka, R., Suzuki, Y., Watanabe, H., Fujioka, T., Hirata, K., Shin, T., … Itoh, H. (2021). Association of CYP3A5 polymorphisms and parathyroid hormone with blood level of tacrolimus in patients with end-stage renal disease. Clinical and Translational Science, 14(5), 2034–2042. https://doi.org/10.1111/cts.13065
Tillman, E. M., Nikirk, M. G., Chen, J., Skaar, T. C., Shugg, T., Maddatu, J., … Eadon, M. T. (2023). Implementation of Clinical Cytochrome P450 3A Genotyping for Tacrolimus Dosing in a Large Kidney Transplant Program. The Journal of Clinical Pharmacology, 63(8), 961–967. https://doi.org/10.1002/jcph.2249
Wang, P., Zhang, Q., Tian, X., Yang, J., & Zhang, X. (2020). Tacrolimus starting dose prediction based on genetic polymorphisms and clinical factors in chinese renal transplant recipients. Genetic Testing and Molecular Biomarkers, 24(10), 665–673. https://doi.org/10.1089/gtmb.2020.0077
Wolesensky, C. S. (2025). Improved LCP Tacrolimus XR Dosing and Monitoring Outcomes With a Genotype‐Based Dosing Algorithm Versus Weight Based Dosing. Clinical Transplantation, 39(11). https://doi.org/10.1111/ctr.70363
Zhang, M., Tajima, S., SHIGEMATSU, T., Noguchi, H., Kaku, K., Tsuchimoto, A., … Ieiri, I. (2022). Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method to Simultaneously Measure Tacrolimus and Everolimus Concentrations in Kidney Allograft Biopsies After Kidney Transplantation. Therapeutic Drug Monitoring, 44(2), 275–281. https://doi.org/10.1097/ftd.0000000000000912











